ml4chem package

Subpackages

Submodules

ml4chem.active module

class ml4chem.active.ActiveLearning(labeled, unlabeled, atomistic=True)[source]

Bases: object

Active Learning

Parameters:
  • labeled (list) – List of graphs or objects.

  • unlabeled (object) – List of graphs or objects.

  • atomistic (bool, optional) – Atomistic similarities?, by default False.

run(kernel, max_variance=10, max_iter=None)[source]

Run the ActiveLearning class

Parameters:
  • kernel (object) – A kernel to measure similarity.

  • max_variance (float, optional) – Maximum variance allowed, by default 10.

  • max_iter (int, optional) – Maximum number of iterations allowed, by default None.

ml4chem.metrics module

ml4chem.metrics.compute_mae(outputs, targets, atoms_per_image=None)[source]

Compute MAE

Useful when using futures.

Parameters:
  • outputs (list) – List of outputs.

  • targets (list) – List if targets.

  • atoms_per_image (list) – List of atoms per image.

Returns:

mae – Mean absolute error.

Return type:

float

ml4chem.metrics.compute_mse(outputs, targets, atoms_per_image=None)[source]

Compute MSE

Useful when using futures.

Parameters:
  • outputs (list) – List of outputs.

  • targets (list) – List if targets.

  • atoms_per_image (list) – List of atoms per image.

Returns:

mse – Mean squared error.

Return type:

float

ml4chem.metrics.compute_rmse(outputs, targets, atoms_per_image=None)[source]

Compute RMSE

Useful when using futures.

Parameters:
  • outputs (list) – List of outputs.

  • targets (list) – List if targets.

  • atoms_per_image (list) – List of atoms per image.

Returns:

rmse – Root-mean squared error.

Return type:

float

ml4chem.utils module

ml4chem.visualization module

Module contents