Source code for ml4chem.metrics

import torch
import numpy as np


[docs] def compute_rmse(outputs, targets, atoms_per_image=None): """Compute RMSE Useful when using futures. Parameters ---------- outputs : list List of outputs. targets : list List if targets. atoms_per_image : list List of atoms per image. Returns ------- rmse : float Root-mean squared error. """ # Concatenate outputs and targets if they come as list of tensors if isinstance(outputs, list): try: outputs = torch.cat(outputs) numpy = False except TypeError: outputs = np.array(outputs) numpy = True if isinstance(targets, list): try: targets = torch.cat(targets) numpy = False except TypeError: targets = np.array(targets) numpy = True # When doing atomistic models then atoms_per_image exists. if atoms_per_image is not None: # Dimensions do not match outputs = outputs / atoms_per_image targets = targets / atoms_per_image if numpy: rmse = np.sqrt((np.square(outputs - targets)).mean()) else: rmse = torch.sqrt(torch.mean((outputs - targets).pow(2))).item() return rmse
[docs] def compute_mse(outputs, targets, atoms_per_image=None): """Compute MSE Useful when using futures. Parameters ---------- outputs : list List of outputs. targets : list List if targets. atoms_per_image : list List of atoms per image. Returns ------- mse : float Mean squared error. """ # Concatenate outputs and targets if they come as list of tensors if isinstance(outputs, list): try: outputs = torch.cat(outputs) numpy = False except TypeError: outputs = np.array(outputs) numpy = True if isinstance(targets, list): try: targets = torch.cat(targets) numpy = False except TypeError: targets = np.array(targets) numpy = True # When doing atomistic models then atoms_per_image exists. if atoms_per_image is not None: # Dimensions do not match outputs = outputs / atoms_per_image targets = targets / atoms_per_image if numpy: mse = (np.square(outputs - targets)).mean() else: mse = torch.mean((outputs - targets).pow(2)).item() return mse
[docs] def compute_mae(outputs, targets, atoms_per_image=None): """Compute MAE Useful when using futures. Parameters ---------- outputs : list List of outputs. targets : list List if targets. atoms_per_image : list List of atoms per image. Returns ------- mae : float Mean absolute error. """ # Concatenate outputs and targets if they come as list of tensors if isinstance(outputs, list): try: outputs = torch.cat(outputs) numpy = False except TypeError: outputs = np.array(outputs) numpy = True if isinstance(targets, list): try: targets = torch.cat(targets) numpy = False except TypeError: targets = np.array(targets) numpy = True # When doing atomistic models then atoms_per_image exists. if atoms_per_image is not None: # Dimensions do not match outputs = outputs / atoms_per_image targets = targets / atoms_per_image if numpy: mae = (np.abs(outputs - targets)).mean() else: mae = torch.mean(torch.abs(outputs - targets)).item() return mae