Source code for ml4chem.optim.handler

import logging
import torch


logger = logging.getLogger()


[docs] def get_optimizer(optimizer, params): """Get optimizer to train pytorch models There are several optimizers available in pytorch, and all of them take different parameters. This function takes as arguments an optimizer tuple with the following structure: >>> optimizer = ('adam', {'lr': 1e-2, 'weight_decay': 1e-6}) and returns an optimizer object. Parameters ---------- optimizer : tuple Tuple with name of optimizer and keyword arguments of optimizer as shown above. params : list Parameters obtained from model.parameters() method. Returns ------- optimizer : obj An optimizer object. Notes ----- For a list of all supported optimizers please check: https://pytorch.org/docs/stable/optim.html """ optimizer_name, kwargs = optimizer try: optimizer_name = optimizer_name.lower() except AttributeError: pass if optimizer_name is None: kwargs = { "lr": 1, "history_size": 10, "line_search": "Wolfe", "dtype": torch.float, "debug": False, } from ml4chem.optim.LBFGS import FullBatchLBFGS optimizer_name = "LBFGS" optimizer = FullBatchLBFGS(params, **kwargs) elif optimizer_name == "adam": optimizer = torch.optim.Adam(params, **kwargs) optimizer_name = "Adam" elif optimizer_name == "lbfgs": from ml4chem.optim.LBFGS import FullBatchLBFGS optimizer = FullBatchLBFGS(params, **kwargs) optimizer_name = "LBFGS" elif optimizer_name == "adagrad": optimizer = torch.optim.Adagrad(params, **kwargs) optimizer_name = "Adagrad" elif optimizer_name == "adadelta": optimizer = torch.optim.Adadelta(params, **kwargs) optimizer_name = "Adadelta" elif optimizer_name == "sparseadam": optimizer = torch.optim.SparseAdam(params, **kwargs) optimizer_name = "SparseAdam" elif optimizer_name == "adamax": optimizer = torch.optim.Adamax(params, **kwargs) optimizer_name = "Adamax" elif optimizer_name == "asgd": optimizer = torch.optim.ASGD(params, **kwargs) optimizer_name = "ASGD" elif optimizer_name == "rmsprop": optimizer = torch.optim.RMSprop(params, **kwargs) optimizer_name = "RMSprop" elif optimizer_name == "rprop": optimizer = torch.optim.Rprop(params, **kwargs) optimizer_name = "Rprop" elif optimizer_name == "sgd": optimizer = torch.optim.SGD(params, **kwargs) optimizer_name = "SGD" logger.info("Optimizer") logger.info("---------") logger.info("Name: {}.".format(optimizer_name)) logger.info("Options:") for k, v in kwargs.items(): logger.info(" - {}: {}.".format(k, v)) logger.info(" ") return optimizer_name, optimizer
[docs] def get_lr_scheduler(optimizer, lr_scheduler): """Get a learning rate scheduler With a learning rate scheduler it is possible to perform training with an adaptative learning rate. Parameters ---------- optimizer : obj An optimizer object. lr_scheduler : tuple Tuple with structure: scheduler's name and a dictionary with keyword arguments. >>> scheduler = ('ReduceLROnPlateau', {'mode': 'min', 'patience': 10}) Returns ------- scheduler : obj A learning rate scheduler object that can be used to train models. Notes ----- For a list of schedulers and respective keyword arguments, please refer to https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html """ scheduler_name, kwargs = lr_scheduler scheduler_name = scheduler_name.lower() if scheduler_name == "reducelronplateau": scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, **kwargs) name = "ReduceLROnPlateau" elif scheduler_name == "multisteplr": scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, **kwargs) name = "MultiStepLR" elif scheduler_name == "steplr": scheduler = torch.optim.lr_scheduler.StepLR(optimizer, **kwargs) name = "StepLR" logger.info("Learning Rate Scheduler") logger.info("-----------------------") logger.info(" - Name: {}.".format(name)) logger.info(" - Args: {}.".format(kwargs)) logger.info("") return scheduler
[docs] def get_lr(optimizer): """Get current learning rate Parameters ---------- optimizer : obj An optimizer object. Returns ------- lr Current learning rate. """ for param_group in optimizer.param_groups: return param_group["lr"]